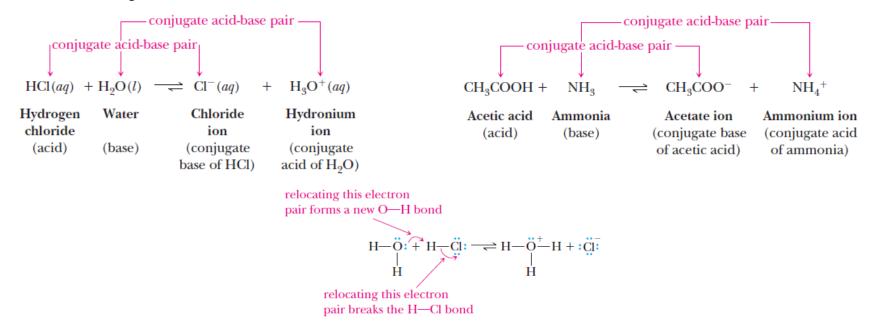


Corso di Laurea Magistrale in Ingegneria Biomedica Complementi di Chimica e Biochimica per le Tecnologie Biomediche

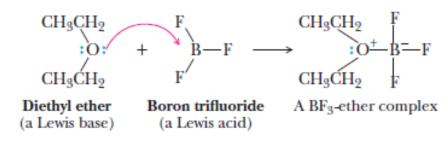
Acidi e Basi

Francesca Anna Scaramuzzo, PhD

Dipartimento di Scienze di Base e Applicate per l'Ingegneria - Centro di Nanotecnologie Applicate all'Ingegneria francesca.scaramuzzo@uniroma1.it

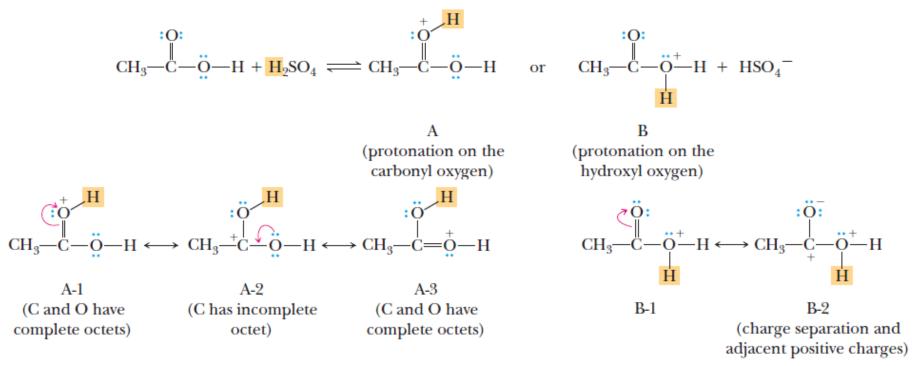

Dipartimento di

SCIENZE DI BASE E APPLICATE PER L'INGEGNERIA


Definizioni

Arrhenius: In acqua, un acido è una specie che libera ioni H⁺, una base è una specie che libera ioni OH⁻ (es. HCl, NaOH).

Brønsted & Lowry: Un acido è un donatore di protoni, una base è un accettore di protoni (es. HCl, NH₃).


Lewis: Un acido è una specie in grado di accettare una coppia di elettroni (elettrofilo), una base è una specie in grado di donare una coppia di elettroni (nucleofilo) (es. BF₃, CH₃OCH₃). Gli acidi di Lewis non sono necessariamente protici.

Acidi e basi di Brønsted & Lowry

Brønsted & Lowry: Un acido è un donatore di protoni, una base è un accettore di protoni

Basi di Brønsted & Lowry con più siti di protonazione

La protonazione di un gruppo carbossilico avviene prevalentemente sull'ossigeno carbonilico

Elettroni π come basi di Brønsted & Lowry

$$CH_{3}-CH=CH-CH_{3}+H-Br: \longleftrightarrow CH_{3}-C-C-C-CH_{3}+:Br:$$

$$H H$$
2-Butene
$$sec\text{-Butyl cation}$$
(a 2° carbocation)

Forza relativa di acidi e basi

$$HA + H_2O \Longrightarrow A^- + H_3O^+ \qquad K_{eq} = \frac{[H_3O^+][A^-]}{[HA][H_2O]} \qquad K_a = K_{eq}[H_2O] = \frac{[H_3O^+][A^-]}{[HA]} \qquad pK_a = -\log_{10}K_a$$

	Acid	Formula	pK_a	Conjugate Base	
Weaker	Ethane	CH_3CH_3	51	$\mathrm{CH_{3}CH_{2}^{-}}$	Stronger
acid	Ethylene	$CH_2 = CH_2$	44	$\mathrm{CH_2"CH^-}$	conjugate base
	Ammonia	NH_3	38	$\mathrm{NH_2}^-$	
	Hydrogen	H_2	35	H^-	
	Acetylene	НС≡СН	25	$HC = C^-$	
	Ethanol	CH_3CH_2OH	15.9	$\mathrm{CH_{3}CH_{2}O^{-}}$	
	Water	H_2O	15.7	HO^-	
	Methylammonium ion	$CH_3NH_3^{+}$	10.64	CH_3NH_2	
	Bicarbonate ion	HCO ₃	10.33	CO_3^{2-}	
	Phenol	C_6H_5OH	9.95	$C_6H_5O^-$	
	Ammonium ion	$\mathrm{NH_4}^+$	9.24	NH_3	
	Hydrogen sulfide	H_2S	7.04	HS ⁻	
	Carbonic acid	H_2CO_3	6.36	$\mathrm{HCO_3}^-$	
	Benzoic acid	C_6H_5COOH	4.19	$C_6H_5COO^-$	
	Hydrogen fluoride	HF	3.2	\mathbf{F}^{-}	
	Phosphoric acid	H_3PO_4	2.1	$\mathrm{H_2PO_4}^-$	
	p-Toluenesulfonic acid	$\mathrm{CH_3C_6H_4SO_3H}$	0.7	$\mathrm{CH_3C_6}\ \mathrm{H_4SO_3}^-$	
	Nitric acid	HNO_3	-1.5	NO_3^-	
Stronger acid	Hydronium ion	$\mathrm{H_{3}O}^{+}$	-1.74	H_2O	Weaker conjugate base
	Sulfuric acid	H_2SO_4	-5.2	${ m HSO_4}^-$	conjugate base
	Hydrogen chloride	HCl	-7	Cl ⁻	
	Hydrogen bromide	HBr	-8	Br^-	
	Hydrogen iodide	НІ	-9.9	I ⁻	

Gli equilibri acido-base

Calcolo della costante di equilibrio per le reazioni acido-base

HA + B
$$\longrightarrow$$
 A⁻ + BH⁺

Acid Base Conjugate Conjugate base of HA acid of B

$$K_{\text{eq}} = \frac{[A^{-}][BH^{+}]}{[HA][B]} = \frac{[A^{-}][BH^{+}]}{[HA][B]} \times \frac{[H_{3}O^{+}]}{[H_{3}O^{+}]} = \frac{[A^{-}][H_{3}O^{+}]}{[HA]} \times \frac{[BH^{+}]}{[B][H_{3}O^{+}]} = \frac{K_{\text{HA}}}{K_{\text{HB}}^{+}}$$

$$pK_{\text{eq}} = pK_{\text{HA}} - pK_{\text{BH}}^{+}$$

Esercizio

Calcolare la costante di equilibrio per la seguente reazione e dire se l'equilibrio è spostato verso destra o verso sinistra, giustificando la risposta

HC=CH +
$$NH_2^ \Longrightarrow$$
 HC=C $^-$ + NH_3

Acetylene Amide ion Acetylide ion Ammonia pK_3 25

Meccanismi di reazione e aspetti termodinamici

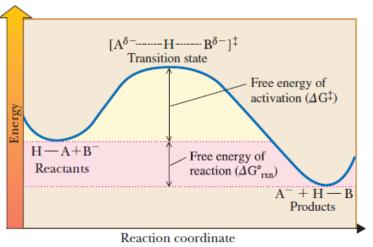
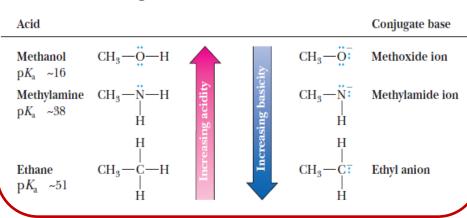

Meccanismo di reazione: descrizione dettagliata (passaggio per passaggio) del modo in cui avviene una reazione

Diagramma di reazione: grafico che descrive l'andamento dell'energia in funzione della coordinata di reazione

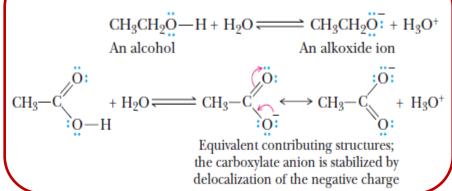
 $\Delta G^{\circ} = -RT \ln K_{\text{eq}}$

Coordinata di reazione: grandezza che esprime l'avanzamento di una reazione

$$\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ}$$
.


	$\Delta S^{\circ} < 0$	$\Delta S^{\circ} > 0$
$\Delta H^{\circ} > 0$	$\Delta G^{ \mathrm{o}} > 0$; the position of equilibrium favors reactants	At higher temperatures when $T\Delta S^{\circ} < \Delta H^{\circ}$ and $\Delta G^{\circ} < 0$, the position of equilibrium favors products
$\Delta H^{\circ} < 0$	At lower temperatures when $T\Delta S^{o} < \Delta H^{o}$ and $\Delta G^{o} < 0$; the position of equilibrium favors products	$\Delta G^{ { m o}} < 0$; the position of equilibrium favors products

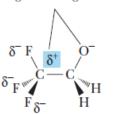
Meccanismo di una reazione acido-base


$$R - \overset{\circ}{\bigcirc} - H \overset{\circ}{+} : B^{-} \longrightarrow [R - \overset{\circ}{\bigcirc} \overset{\circ}{-} - - - H - - - B \overset{\circ}{-}] \longrightarrow R - \overset{\circ}{\bigcirc} :^{-} + H - B$$

Fattori che influenzano l'acidità

Elettronegatività

Delocalizzazione di carica sull'anione


Grandezza dell'atomo carico negativamente

Effetto induttivo e stabilizzazione elettrostatica

$$\begin{array}{cccc} & & & & & & F \\ H-C-CH_2O-H & & & F-C-CH_2O-H \\ & & & & F \\ \hline & Ethanol & & & 2,2,2-Trifluoroethanol \\ pK_a 15.9 & & pK_a 12.4 \\ \end{array}$$

Effetto induttivo: polarizzazione elettronica causata da atomi vicini

The partial positive charge helps neutralize the negative charge on oxygen

Ibridazione e percentuale di carattere s degli orbitali dell'anione

Weak Acid		Conjugate Base	pK_a	
Water	НО—Н	HO^-	15.7	
Alkyne	НС≡С—Н	$HC \equiv C^-$	25	idity
Ammonia	H_2N — H	H_2N^-	38	ingaci
Alkene	СН2=СН-Н	CH_2 = CH^-	44	increasing acidity
Alkane	CH ₃ CH ₂ —H	$\mathrm{CH_3CH_2}^-$	51	Ħ